Wettability and swelling of acetylated and furfurylated wood analyzed by a multicycle Wilhelmy plate method

Maziar Sedighi Moghaddam, 1 Magnus Wålinder, 2 Per Claesson 1,3 and Agne Swerin 1,3

1SP Technical Research Institute of Sweden - Chemistry, Materials and Surfaces, Stockholm, Sweden
2KTH Royal Institute of Technology, School of Architecture and the Built Environment, Building Materials, Stockholm, Sweden
3KTH Royal Institute of Technology, School of Chemical Science and Engineering, Surface and Corrosion Science, Stockholm, Sweden

ECWM7- Lisbon, 10-12 Mar. 2014
Why wettability study?

Target Properties
- Good wettability
 - Adhesion
 - Hydrophilicity
- Weak wettability
 - Hydrophobicity
 - Dimensional stability

Examples
- Adhesives, coatings
- Chemical modification
- Impregnation
- Performance
- Service life
BACKGROUND

multi-cycle Wilhelmy plate method

\[F(h) = P_y \cos \theta - \rho Ahg + F_w(t) \]

BACKGROUND

multi-cycle Wilhelmy plate method

\[F(h) = P \gamma \cos \theta - \rho Ahg + Fw(t) \]

\[F_A = P \gamma \cos \theta_A \]

- Contact angle
- Dynamic sorption
- Dimensional stability
- Extractives dissolution
BACKGROUND

multi-cycle Wilhelmy plate method

\[F(h) = Pγcosθ - ρAhg + Fw(t) \]

- Contact angle
- Dynamic sorption \(\text{liquid mass} \% = \frac{F_{fn}}{W_o} \times 100 \)
- Dimensional stability
- Extractives dissolution

SP Technical Research Institute of Sweden
BACKGROUND

multi-cycle Wilhelmy plate method

\[F(h) = P \gamma \cos \theta - \rho A h g + F w(t) \]

- Contact angle
- Dynamic sorption
- Dimensional stability
- Extractives dissolution

\[P_n = P_{n-1} + (F_{f,n} - F_{f,n-1}) \frac{\Delta P}{\Delta F_f} \]

\[P_n \ & P_{n-1} : \text{veneer parameters after cycle} \ n \ \text{and} \ (n-1) \]
\[F_{f,n} \ & F_{f,n-1} : \text{final forces for cycle} \ n \ \text{and} \ (n-1) \]
\[\Delta P = P_f - P_0 \]
\[\Delta F_f: \text{total changes in final force} \]
BACKGROUND

multi-cycle Wilhelmy plate method

\[F(h) = P \gamma \cos \theta - \rho A h g + F_w(t) \]

- Contact angle
- Dynamic sorption
- Dimensional stability
- Extractives dissolution
 - Measuring surface tension of water before and after a multicycle test

\[\Delta \gamma = \gamma - \gamma_f \]
OBJECTIVES

• Applying multi-cycle Wilhelmy plate method on modified wood in order to study dynamic wetting and swelling, as well as dimensional stability

• Evaluating the effect of level and type of modification on capillary uptake and swelling rate of modified wood samples
MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS22.2</td>
<td>Acetylated SYP with 22.2% acetyl content</td>
</tr>
<tr>
<td>US22.2</td>
<td>Unmodified SYP matched to AS22.2</td>
</tr>
<tr>
<td>AS15.9</td>
<td>Acetylated SYP with 15.9% acetyl content</td>
</tr>
<tr>
<td>US15.9</td>
<td>Unmodified SYP matched to AS15.9</td>
</tr>
<tr>
<td>FS28</td>
<td>Furfurylated SYP with WPG of 28%</td>
</tr>
<tr>
<td>FS45</td>
<td>Furfurylated SYP with WPG of 45%</td>
</tr>
<tr>
<td>FS54</td>
<td>Furfurylated SYP with WPG of 54%</td>
</tr>
</tbody>
</table>

SYP: Southern Yellow Pine

- Thermally treated veneers at 104 °C for 1 h (MC=0%)
- Freshly cut veneers
MATERIALS AND METHODS

- Liquids
 - Water swelling liquid
 - Octane non-swelling liquid

- Multi-cycle Wilhelmy plate method
 - 20C for water and 10C for octane

- Perimeter determination by doing an octane immersion

- Dimensional stability – using the perimeter model
RESULTS and DISCUSSION

Contact angle

<table>
<thead>
<tr>
<th>Sample name</th>
<th>(\text{CA}_{\text{app}} ^\circ) thermally treated sample</th>
<th>(\text{CA}_{\text{app}} ^\circ) fresh sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS15.9</td>
<td>81(\pm)5</td>
<td>72(\pm)1</td>
</tr>
<tr>
<td>US15.9</td>
<td>81(\pm)3</td>
<td>55(\pm)9</td>
</tr>
<tr>
<td>AS22.2</td>
<td>73(\pm)5</td>
<td>76(\pm)1</td>
</tr>
<tr>
<td>US22.2</td>
<td>63(\pm)5</td>
<td>58(\pm)3</td>
</tr>
<tr>
<td>FS28</td>
<td>63(\pm)5</td>
<td>54(\pm)7</td>
</tr>
<tr>
<td>FS45</td>
<td>87(\pm)4</td>
<td>70(\pm)3</td>
</tr>
<tr>
<td>FS54</td>
<td>65(\pm)7</td>
<td>58(\pm)3</td>
</tr>
</tbody>
</table>
RESULTS and DISCUSSION

Sorption - Furfurylated samples

- A fast regime with filling the voids and capillary action
- A slower regime with liquid up-take by diffusion/swelling
RESULTS and DISCUSSION

Sorption- Furfurylated samples

- Furfurylation decreases both the porosity and the degree of swelling
- Higher liquid repellency with higher level of modification
RESULTS and DISCUSSION

Sorption- Acetylated samples

- Lower rate and level of swelling for acetylated samples
- Lower liquid uptake for the sample having more latewood
Results and discussion - dimensional stability

Graphs showing the perimeter change (%) against cycle number for different materials:

- **Graph a)**
 - Materials: AC15.9, US15.9, AC22.2, US22.2
 - X-axis: Cycle No.
 - Y-axis: Perimeter change (%)

- **Graph b)**
 - Materials: FS28, FS45, US
 - X-axis: Cycle No.
 - Y-axis: Perimeter change (%)
RESULTS and DISCUSSION

Acetylation vs. Furfurylation

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Water up-take (F_{f20}) (%)</th>
<th>Octane up-take (F_{f10}) (%)</th>
<th>ΔP_{20} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS15.9</td>
<td>34.1±1.6</td>
<td>21.0±1.5</td>
<td>3.7±0.5</td>
</tr>
<tr>
<td>US15.9</td>
<td>54.3±1.5</td>
<td>28.0±2.9</td>
<td>12.2±5.6</td>
</tr>
<tr>
<td>AS22.2</td>
<td>41.9±3.7</td>
<td>34.8±6.2</td>
<td>2.5±0.3</td>
</tr>
<tr>
<td>US22.2</td>
<td>70.6±4.2</td>
<td>36.3±3.2</td>
<td>9.9±1.2</td>
</tr>
<tr>
<td>FS28</td>
<td>21.3±4.5</td>
<td>11.8±0.6</td>
<td>7.0±4.1</td>
</tr>
<tr>
<td>FS45</td>
<td>12.7±1.5</td>
<td>8.5±0.7</td>
<td>0.8±0.7</td>
</tr>
<tr>
<td>FS54</td>
<td>18.1±4.9</td>
<td>12.6±3.0</td>
<td>1.8±0.3</td>
</tr>
</tbody>
</table>

- Swelled cell wall due to chemical bonds for both type of modification
- Highly branched and cross-linked polymer in furfurylated samples
CONCLUSION

• Multicycle Wilhelmy plate method is a suitable technique for studying the dynamic wetting, swelling and liquid sorption behaviour of modified wood

• Lower contact angle for freshly cut veneers than thermally treated ones
• Acetylation makes the wood surface more hydrophobic
CONCLUSION

• Lower liquid (water and octane) uptake, lower swelling and higher
dimensional stability for furfurylated samples than acetylated ones

• Earlywood SYP shows higher liquid uptake/swelling than the latewood region

• By multicycle Wilhelmy in a swelling liquid (water) and non-swelling
liquid (octane), it is possible to study the capillary uptake and
swelling rate

• Acetylation mainly affects the swelling part of water uptake, while
furfurylation decreases both capillary uptake and swelling level
ACKNOWLEDGEMENTS

- Nils and Dorthi Tröedsson Foundation for Scientific Research for financial support

- Dr. Mats Westin and Dr. Pia Larsson Brelid at SP Trä for preparing and supplying the modified samples
Thanks for your attention!